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DELTA: Decomposed Efficient Long-Term Robot Task Planning
using Large Language Models
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Abstract— Recent advancements in Large Language Models
(LLMs) have sparked a revolution across many research
fields. In robotics, the integration of common-sense knowledge
from LLMs into task and motion planning has drastically
advanced the field by unlocking unprecedented levels of context
awareness. Despite their vast collection of knowledge, large
language models may generate infeasible plans due to hal-
lucinations or missing domain information. To address these
challenges and improve plan feasibility and computational
efficiency, we introduce DELTA, a novel LLM-informed task
planning approach. By using scene graphs as environment
representations within LLMs, DELTA achieves rapid generation
of precise planning problem descriptions. To enhance planning
performance, DELTA decomposes long-term task goals with
LLMs into an autoregressive sequence of sub-goals, enabling
automated task planners to efficiently solve complex problems.
In our extensive evaluation, we show that DELTA enables an
efficient and fully automatic task planning pipeline, achieving
higher planning success rates and significantly shorter planning
times compared to the state of the art. Project webpage:
https://delta-1llm.github.io/

I. INTRODUCTION

With the rapid and enormous progress in the research field
of Natural Language Processing (NLP), various powerful
Large Language Models (LLMs) have been developed that
are capable of producing human-like texts, programming
code, and service compositions etc. [1]-[5]. Nowadays with
more and more robots cooperating with humans in industrial
and household settings [6], [7], e.g., performing household
tasks such as cleaning (Fig. [I), many researchers use LLMs
for solving robot Task And Motion Planning (TAMP) prob-
lems [8]-[15]. While directly using pre-trained LLMs to
generate action plans for the robots tends to result in ex-
tremely low success rates in generating executable plans and
completing the goals [16], [17], most of them use LLMs to
extract common-sense knowledge to improve the performance
of classical automated task planning approaches with respect
to plan correctness, executability, and feasibility [8], [11],
[14]. Several approaches use LLMs to generate task spec-
ifications defined in formal language, e.g., the domain and
problem files programmed in the Planning Domain Definition
Language (PDDL) [18], that can be solved by the off-the-
shelf TAMP algorithms [10], [19], [20]. However, previous
TAMP approaches were cumbersome as they required vast
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Fig. 1: An example of the long-term task decomposition. A Scene
Graph (SG) is pre-built from the environment [25]. Using the SG as
the environment representation, a human user queries a LLM with
goal descriptions to extract the relevant items and decompose the
goal into multiple sub-goals. An automated task planner generates
a task plan with respect to the sub-goals for the robot to execute.

manual knowledge engineering and input from human ex-
perts, inducing practically impossible domain adaptations. On
the other hand, none of the approaches above tackle long-
term task planning problems, which are particularly difficult
to solve with the growing problem complexity [14].

For robots solving long-term task sequences in large
and complex environments, having efficient environment
representations is a crucial prerequisite for the robot to
understand the semantic information [21]. While mapping
the mid-level perceptual representations (e.g., 2D semantic
segmentation) into more appropriate high-level abstractions
(e.g., environment topology and semantic relations between
objects) can be costly and complex [22], it can be solved
efficiently using high-level representations such as Scene
Graphs (SGs) [23]. For tackling task planning problems in
such environments, researchers have found that SGs can serve
as compact and informative spatial representations and can
improve planning efficiency [13], [22], [24].

As it emerges from the state of the art, utilizing LLMs
and automated task planning techniques to solve long-term
robot task planning problems, with structured representations
of large environments, still remains an open research topic.
Therefore, we propose DELTA: Decomposed Efficient Long-
term TAsk planning for mobile robots using LLMs, which
is the first, to the best of our knowledge, to fill the afore-
mentioned vacancy. DELTA first feeds SGs into LLMs to
generate the necessary domain and problem specifications
in formal planning language, then decomposes the long-
term task goals into multiple sub-ones using LLMs. The
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corresponding sub-problems are then solved autoregressively
with an automated task planner. In summary, we present the
following key contributions:

i) We introduce a novel combination of LLMs and SGs
that enables the extraction of actionable and semantic knowl-
edge from LLMs and its grounding into the environmental
topology. Thanks to one-shot prompting, DELTA is capable
of solving complex planning problems in unseen domains.

ii) We show that with the LLM-driven task decomposition
strategy and the usage of formal planning language, compared
to representative LLM-based baselines, DELTA is able to
complete long-term tasks with higher success rates, near-
optimal plan quality, and significantly shorter planning time.

II. RELATED WORK
A. 3D Scene Graphs

A 3D Scene Graph (3DSQG) is a recent 3D scene represen-
tation used to model large real-world environments as a graph
structure. They were first introduced by Armeni et al. [25]
as a hierarchical model to connect buildings, rooms, objects,
and humans in multiple layers. Following this introduction,
Rosinol et al. [26], [27] and Hughes et al. [28] investi-
gated the construction of 3DSGs from sensor data. While
other approaches focus on modeling semantic relationships
between objects [29]-[33] from 3D point clouds. With the
rise of LLMs, 3DSGs also become open-vocabulary [34]-
[36], offering a deeper understanding of relationships between
objects. Recently, 3DSGs have started to be integrated into
robotics systems. Applications include navigation [34], [35],
[37] as well as task and motion planning [13], [24].

B. LLM-based Robot Task and Motion Planning

The rich embedded semantic and common-sense knowl-
edge allows LLMs to proficiently understand Natural Lan-
guage (NL) instructions and perform temporal reasoning,
first-order logic translation, and few-shot or even zero-shot
planning [38]-[40]. However, LLMs still struggle with ana-
lyzing complex spatial relationships and processing detailed
environmental features [16]. Consequently, plans directly
generated by LLMs are often not executable for the robots.
Therefore, researchers have developed various approaches to
ground LLM’s output into executable and affordable action
plans, or ground actionable knowledge into formal planning
or programming language. Ahn et al. [12] proposed SayCan
to constrain the LLMs with pre-trained skills when generating
actions. Liu et al. [10] introduced LLM+P that translates NL
problem descriptions into PDDL problem files with LLMs
given user-provided PDDL domain files. Silver et al. [15]
leveraged LLMs to comprehend the domain knowledge and
problem specifications from PDDL files, then used LLMs to
generate Python code to solve the problems. However, most
of these approaches require handcrafted domain descriptions
provided by human experts, and do not generalize to new
domain knowledge. Moreover, they do not tackle long-term
planning problems in large and complex environments.

Semantic understanding is a crucial factor for robot navi-
gation in large environments. LLMs unlock the capability of
reasoning over semantic relations embedded in large scenes

Fig. 2: Shelbiana scene [25] and the corresponding SG with floor,
, and item node layers. The edges refer to the semantic
relationships. Not all item nodes are visualized.

and allow the capture of those relations from different scene
representations, e.g., semantic maps [41], landmarks [42],
[43], as well as SGs. Rana et al. [13] proposed SayPlan
that uses LLMs to first conduct a semantic search through
3DSGs, then generates task plans upon the graph and refines
iteratively, achieving grounded and scalable robot TAMP. But
it still does not aim to solve long-term tasks.

However, since the probability of LLMs in producing
incorrect output accumulates with growing planning horizon
[16], most of the LLM-based approaches above have diffi-
culties in tackling long-term planning problems. Thus, they
mainly focus on semantically simple short-term tasks, e.g.,
object rearrangement, object-goal navigation, or other tasks
that consist of a few such sub-tasks. The capability of LLMs
to handle long-term tasks in large environments is not fully
exploited. While decomposing a long-term task into multiple
sub-tasks via classical machine learning methods can lead to
a significant reduction of planning time [6], completing such
a job with LLMs is still unexplored in the state-of-the-art.

III. METHODOLOGY
A. Problem Statement

We focus on solving long-term robot task planning prob-
lems with LLMs and consider mobile robot navigation tasks
in household environments. The approach can also be gen-
eralized to other use cases. Given a SG as environment rep-
resentation and domain and problem descriptions in NL, the
LLM will generate the PDDL planning files and decompose
the long-term goal into a sequence of sub-goals for solving
the corresponding sub-problems autoregressively.

To distinguish the object keyword in PDDL from objects in
SGs, in the following, we refer to the objects in SGs as ifems.
We define agent as an object type in the domain file and robot
as an instance of agent in the problem file. Furthermore, we
assume full observability of all nodes in the SGs.

B. System Architecture

The architecture of DELTA is built around a five-step
process (Fig. B): domain generation, scene graph pruning,
problem generation, goal decomposition, and autoregressive
sub-task planning.

1) Domain Generation: The LLM takes an NL prompt
describing the domain knowledge as input and generates
a domain description file encoded in formal planning
language, e.g., PDDL, correspondingly in a one-shot fashion.
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Fig. 3: The system architecture of DELTA with five steps: Domain Generation, Scene Graph Pruning, Problem Generation, Goal

Decomposition, and Autoregressive Sub-Task Planning.

Listing 1: Action “mop floor” defined in PDDL

(:action mop_floor

:parameters (?a - agent ?i - item ?r - room)

:precondition (and
(agent_at ?a ?r)
(item_is_mop ?1i)
(item_pickable ?1i)
(agent_has_item 7a ?1i)
(mop_clean ?1i)
(not (floor_clean ?r))

)

:effect (and
(floor_clean ?r)
(not (mop_clean ?1))
(not (battery_full ?a))

)

The prompt consists of three main parts: role, example,
and instruction. The further prompts in the following steps
also have the same structure. The example of the domain
description includes the necessary object types and the action
knowledge, i.e., pre-conditions and effects. For instance, the
“mop _floor” action can be described as “For mopping the
floor, the agent is in the room and has the mop in hand, the
mop is clean while the floor is not clean. After the action,
the floor is clean, but the mop is not clean anymore, and the
agent’s battery will no longer be full.” The corresponding
action can be formulated in PDDL as shown in Listing [I}

Subsequently, the instruction introduces the requirements
for generating a new domain file. An overview of the prompt
structure is shown as follows (the purple and blue text refers
to NL description and programming code, respectively):

Role: You are an excellent domain generator. Given a description
of domain knowledge, you can generate a PDDL domain file.
Example: A robot in a household environment can perform the
following example object types and example actions with pre-
conditions and effects. The corresponding action definitions in
a PDDL domain file look like: example_domain.pddl.
Instruction: A new domain has the following new object types
and actions. Please generate a corresponding PDDL domain file.

2) Scene Graph Pruning: SG has a hierarchical structure,
An example of the layout is shown in Fig. 2] The room
nodes are annotated with their neighboring rooms, and the
item nodes contain several attributes, e.g., accessibility, states,
and affordable actions. In particularly large environments,
SGs can contain a large number of items, where not all items
are relevant for accomplishing different tasks. Therefore, we
prune the SGs with LLMs in the following way:

Listing 2: Goal states of the house cleaning problem in PDDL

(:goal
(and
(item_disposed cola_can)
(item_disposed banana_peel)
(floor_clean living_room)
(floor_clean kitchen)
(mop_clean mop)

Example: A SG can be programmed as a nested Python
dictionary such as example_sg.py. For accomplishing the example
goal, the relevant items are [example_relevant_items].
Instruction: Given a new query_sg.py and a new goal descrip-
tion, please prune the SG by keeping the relevant items.

Pruning the SG allows a reduction of input tokens for
the LLMs, thus achieving a fast response time in generating
the problem files. On the other hand, the more concise the
information provided to the LLMs, the less likely that the
LLMs generate erroneous output and hallucinations [16].

3) Problem Generation: The prompt of this step can be
similarly formulated in the following way:

Role: You are an excellent problem generator. Given a SG and
desired goals, you can generate a PDDL problem file.
Example: Given an example_sg.py, an example goal description,
and using the predicates defined in example_domain.pddl, a corre-
sponding PDDL problem file looks like: example_problem.pddl.
Instruction: Given a new query_sg.py, a new goal description,
please generate a new PDDL problem file using the predicates
in the previously generated query_domain.pddl.

In the generated problem file, the connections of rooms in
the SG can be expressed using the neighbor predicate. For
instance, if kitchen is connected with corridor, the relation-
ship can be formulated as (neighbor kitchen corridor) and
(neighbor corridor kitchen) since the rooms are connected bi-
directionally. Similarly, the attributes of items can be defined
with the predicates from the previously generated domain
file, such as their positions and accessibilities. The LLM also
translates the NL goal description into PDDL. E.g., the goal
of a house cleaning problem given by the human user can
be formulated as shown in Listing [2} Fig.

4) Goal Decomposition: To improve the computational
efficiency and reduce the complexity of the planning problem,
the long-term goal defined in the problem file can be
decomposed with LLMs using the following prompt:

Role: You are an excellent assistant in pruning SGs with a list
of SG items and a goal description.

Role: You are an excellent assistant in decomposing long-term
goals. Given a PDDL problem file, you can decompose the goal




states into a sequence of sub-goals.

Example: Given an example_problem.pddl, the goal states can
be decomposed into a sequence of example sub-goals. Using
the predicates defined in example_domain.pddl, the example sub-
goals can be formulated as: sub-goal_1.pddl, ..., sub-goal_n.pddl.
Instruction: Given the query_problem.pddl generated previously,
please decompose the goal considering the predicates and actions
from the previously generated query_domain.pddl.

Taking action knowledge into account in goal decom-
position is essential. For instance, knowing that the action
mop_floor requires mop_clean and results in not (mop_clean)
as shown in Listing [I] which infers that one cannot mop the
floor in another room continuously since the mop turns dirty
after mopping the previous room. Thus, cleaning the mop
before mopping the next room should be considered when
decomposing the goal, as shown in Fig.

5) Autoregressive Sub-Task Planning: We use an auto-
mated task planner to solve the corresponding sub-problems
one after another as shown in Algorithm [T] It takes the planner
I1, the previously generated PDDL domain file d and problem
file po with undecomposed goals, and the sequence of PDDL
sub-goals G as inputs. The initial states s; of the first sub-
problem p; are identical to the initial states sy from the
original problem pg. Thus, p; can be simply formulated by
replacing the undecomposed goal states g, from po with the
first sub-goal states g, from G.

The final states resulting from the plan’s execution of each
solvable sub-problem are, in fact, exactly the initial states of
the next sub-problem. Therefore, as shown in the for-loop in
L. @}9] after solving each sub-problem p, we obtain a sub-
plan 7’ and the resulting final states s (L. @), which will then
be assigned to s for the next sub-problem. The following sub-
problems can be solved in the same way autoregressively.
The final task plan 7 can be obtained by concatenating all
sub-plans 7’ (L. , that only consist of executable actions.

IV. EVALUATION

In this section, we detail the metrics, domains, baselines,
and datasets used for the evaluation.

A. Metrics

We evaluate the proposed system in terms of computational
and task efficiency by the following metrics:

« Success rate: ratio of the succeeded trials to all trials.
A trial is successful if the plan validator reports that the
generated plan is valid, i.e., correct and executable. The
success rates of each domain are averaged through the
experiments with all three scenes.

« Plan length: number of actions in a plan. The decom-
posed plan length shows the length of the concatenated
sub-plans from solving the sub-problems.

« Planning time: inference time of the automated planner
for finding a solution. The decomposed planning time
refers to the total time of solving all sub-problems.

+ Number of expanded nodes: nodes in a search tree
created and explored during the search process for
solving a planning problem. A lower number implies
lower problem complexity reported by the planner.

Algorithm 1: Autoregressive Sub-Task Planning

Data: I1, d, py, G
Result: ©
T+ O
extract 8o, 8q from pg
§ < 80
for g € G do
p + replace sg,8p in pg with 5,8
n',s' < TI(d, p)
T + concat(x, ')
s s
end

LI I Y L S

B. Evaluation Domains

We run the evaluation on five domains. The Laundry
domain has a short-term task that serves as the example for
one-shot prompting, where the robot is asked to bring the dirty
clothes and detergent to the washing machine and then bring
them to the bedroom after washed. Of the other domains,
two have independent sub-tasks, namely, the PC Assembly
domain (in the following abbreviated as PC) requires the
robot to gather six different PC parts, i.e., a mainboard, a
CPU, a GPU, a RAM, a SSD, and a Power Supply Unit
(PSU), distributed in the environment and bring them to the
living room for assembly. In the Dining Table Setup domain
(abbr. Dining), the robot should collect a plate, a fork, a
knife, a spoon, and a glass from different rooms, and also find
something romantic, then place them on the dining table. Both
domains can be decomposed into independent transportation
sub-tasks. The remaining two domains have dependent sub-
tasks which should be executed in a certain order. In the
House Cleaning domain (abbr. Cleaning), the robot should
first dispose of a cola can, a banana peel, and a rotting apple
in the rubbish bin, then mop the floor in the kitchen and
living room and clean the mop immediately after cleaning
each room. Finally, the robot should return to the hub for
recharging. The Home Office Setup domain (abbr. Office)
requires the robot to set up a home office in the living room
by bringing a desk, a lamp, a shelf, and a locker. The shelf
and locker have contents inside that should be kept in the end,
but they cannot be moved without unloading the contents. In
each domain, the robot can only load one item at a time.

C. Baselines

We select four most popular and representative LLM-based
task planning approaches: LLM-As-Planner, LLM+P [10],
LLM-GenPlan [15], and SayPlan [13] according to the usage
of formal language and environmental representation, as well
as the capability of tackling long-term tasks shown in Table [I}

LLM-As-Planner is a naive approach that directly queries
the LLM to generate a high-level plan using a prompt that
comprises all information, i.e., domain knowledge, environ-
ment and goal descriptions.

LLM+P [10] uses LLMs to translate NL problem de-
scriptions into a PDDL problem file given user-provided
PDDL domain files, for an automated task planner to solve
the problem. It can be treated as a subset of DELTA with only
the problem generation step. In the following experiments,
we provide a pre-defined PDDL domain file as input.



Models Formal planning  Structured  Long-term Models PC Dining  Cleaning  Office
language env. repr.  tasks LLM-As-Planner 70 3867 0 0
LLM-As-Planner X X X LLM+P 76 4 0 0
LLM+P [10] X LLM-GenPlan (w/o rp.) 36.67  38.67 0 0
LLM-GenPlan [15] X X LLM-GenPlan 88 80.67 3.33 0.67
SayPlan [13] X X SayPlan (w/o rp.) 8.67 1.33 0 0.67
DELTA (ours) SayPlan 68.67  70.67 54 40
. e . ~ DELTA (Llama-3.1-70B) 34.67 2333 0 0.67

TABLE I: Capabilities of different LLM-based models DELTA (GPT-4-turbo) 9333 74 3067 933

. DELTA (GPT-4o0, w/o dp.) 97.33  99.33 80 68.67

LLM-GenPlan [15] uses LLMs to first summarize the DELTA EGPT—40) p) 98 100 80 74.67

domain knowledge from input PDDL files, then propose a
simple generalized planning strategy without using search,
and finally generates Python code that outputs a task plan.
The LLMs can refine the code using the debug information
from a plan validator with maximal 4 iterations.

SayPlan [13] first determines a task-relevant sub-SG with
the LLM-based semantic search, then uses LLMs to generate
a high-level plan using the sub-SG and iteratively replans
based on environmental feedback. We implemented SayPlan
on our own due to the lack of available open-source code.
The number of maximal replanning iterations is set to 4.

D. Dataset

We use four scene graphs from the 3D Scene Graph dataset
[25]: Kemblesville (9 rooms, 16 items) is paired with the
Laundry domain. Allensville (11 rooms and 42 items), Parole
(7 rooms, 31 items), and Shelbiana (12 rooms, 34 items) are
used to evaluate the rest four domains. We implement the
SGs as nested dictionaries in Python.

E. Implementation and Parameters

We evaluate DELTA with pre-trained GPT-4-turbo (version
2024-04-09), GPT-40 (version 2024-05-13), and Llama-3.1-
70B with default temperature and fop_p parameters. The other
baselines are evaluated with GPT-4o.

We use Fast Downward (FD) [44] automated task planner
with the default search configuration seq-opt-lmcut and the
timeout of 60s. Moreover, we use PDDLGym [45] to obtain
the world states, and the plan validation tool VAL [46] to
validate the correctness and executability of the generated
plans. Each experiment is repeated with 50 trials, resulting in
600 trials crosswise evaluated with 4 domains and 3 scenes in
total. All approaches are implemented in Python 3.8.13. We
run the experiments on a standard PC with an Intel Xeon W
CPU at 3.40 GHz and 32 GB RAM. The GPT models are
deployed with Azure OpenAl Service, while the Liama model
with two Nvidia A100 GPUs in 4-bit quantization.

V. RESULTS AND DISCUSSION

The evaluation results are displayed in Tables [lI| and
LLM-As-Planner performs the worst among all approaches
with 70% and 38.67% in domains with independent sub-tasks,
and no successful case in those with dependent sub-tasks.
Despite the ability in temporal reasoning, LL.Ms still have
difficulties in discovering the underlying dependencies and
preconditions of complex long-term tasks [17], [38].

By grounding NL into formal planning language, LLM+P
is able to achieve slightly higher success rates in the PC
domain and it is also able to reach the optimal plan length
and number of expanded nodes. However, it only reaches 4%

TABLE II: Success rates [%] of different models. The results from
each domain are averaged through all the scenes. The upper part of
the table shows the results of the baselines based on GPT-40. The
lower part lists the outcome of DELTA. w/o rp. and w/o dp. refer
to without replanning and goal decomposition, respectively.

success rate in Dining and never succeeds in Cleaning and
Office domains. The leading failure is planner timeout. Since
LLM+P consumes the original SGs with a large number of
items, although the LLMs have mostly transferred the items
from SGs to the PDDL problem files, the complexity of the
planning problem increases exponentially with the growing
number of items, resulting in exceeding the planner’s timeout.

LLM-GenPlan learns the domain knowledge encoded in
PDDL and generalizes to solve unseen tasks. It achieves
around 80% success rates and near-optimal plan lengths in
the domains with independent sub-tasks (PC and Dining).
Nonetheless, it mostly fails in the other more complex do-
mains. Since LLM-GenPlan solely utilizes LLMs to propose
simple and non-search-based problem-solving strategies, its
capability to tackle more complicated problems, i.e., problems
with underlying preconditioned sub-ones, is greatly limited.

SayPlan achieves slightly lower success rates in the
domains with independent sub-tasks than LLM-GenPlan, but
considerably higher success rates in those with dependent
sub-tasks (54% in Cleaning and 40% in Office), where LLM-
GenPlan barely succeeded. Both approaches have replanning
mechanisms, but LLM-GenPlan only relies on the plan
validator, which checks invalid actions with unsatisfied pre-
conditions. SayPlan on the other hand, obtains feedback from
the SG simulator, which additionally provides environmental
information when an action fails, e.g., cannot go to an
unconnected room, wrong item location, or unaffordable
action upon an item. By grounding the actionable knowledge
into environmental topology (i.e., SGs), SayPlan is able to
tackle more complex tasks then LLM-GenPlan.

Although replanning significantly improves the success
rates of LLM-GenPlan and SayPlan, as indicated by their
results with (w/o replan) in Table [II| it merely ensures the
executability of the generated plans but not the correctness
and optimality, i.e., the plan reaches the goal with the shortest
path. This is because LLMs generate output by predicting
a probability distribution over the possible next tokens [16],
instead of being a search- or an optimization-based planning
process. The higher numbers of plan lengths of LLM-GenPlan
and SayPlan in Table [[II| further prove the statement. Thus,
LLM-GenPlan and SayPlan are not suitable for long-term
task planning, as shown in Table

Finally, DELTA achieved the highest success rates in
all domains. The last two rows of Table [[I infer that the



Metrics  Models PC Dining Cleaning Office

A S P A S P A S P A S P

GT 41 42 47 39 39 33 39 43 41 40 33 52

LLM-As-Planner 41 42.81 47 - 43 35 - - - - - -

Plan LLM+P 41 42 47 - 39 - - - - - - -

Length LLM-GenPlan 41.32 43.65 47 40.95 40.70 35 43.67 - 47 - 37 -
SayPlan 44.45 48 47.24 41.83 46.97 35.48 45 48.11 43.29 46 4285 5647

DELTA 41 42 47 39 39 35 40 44 45 40 33 52
Planning DELTA 0.0134  0.0144  0.0117 0.0101  0.0103 0.0089 0.0112  0.0120 0.0111 0.0170 0.0167 0.0149
Time DELTA (w/o dp.) 51.76 49.29 28.65 42.69 54.68 1.76 23.04 58.38 5.75 24.69  9.01 10.67
Expanded DELTA 624.83 727 576 571.83 59785 561.11 407 364 365.12 405.80 423.03 442.17
Nodes DELTA (w/o dp.) 1,585,185 1,317,615 1,379,036 1,016,429 2,187,261 368,728 1,561,834 1,797,434 107,400 501,148 149,024 321,221

TABLE III: Further metrics of DELTA with and without goal decomposition (w/o dp.) and other baselines in all domains and A(llensville),

S(helbiana), and P(arole) scenes. The ground truth (GT) plan lengths are shown in the first row, indicating the optimal values.
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Fig. 4: Failure analysis of DELTA with GPT-4o. Each step,
success, and failure type is annotated with the number of trials.
Problem Generation and Goal Decomposition are decoupled since
the planning of original and decomposed problems are independent
and executed parallelly with the same number of trials outgoing
from Scene Graph Pruning step.

goal decomposition marginally improves its success rates
since the original problems with undecomposed goals have
significantly higher complexity, as reflected by the number
of expanded nodes in the lower part of Table which
occasionally leads to the planner timeout. Fig. d]indicates that
21 out of the 600 trials failed due to planner timeout. Further
leading causes of failures are incorrectly generated predicates
(37 out of 600 trials, such as the neighbor relationship of
two unconnected rooms), missing attributes (25 out of 600
trials, such as item_accessible), etc.

The key factors that enable DELTA for long-term planning
are grounding the actionable knowledge into formal planning
language and relying on automated planners to find optimal
solutions. As indicated in Table [I] and Sec. with
LLM-+P being a subset of DELTA focusing solely on problem
generation, and both DELTA and LLM+P translating NL into
formal language, LLM+P can also handle long-term planning
problems thanks to the usage of PDDL. However, LLM+P
succeeded notably less than DELTA, because apart from goal
decomposition, LLM+P also suffers from redundant scene
representations, i.e., unpruned SGs, that prevent the automated
planner from finding solutions efficiently. Having more sparse
SGs notably reduces the risk of LLMs producing unnecessary
and possibly incorrect predicates translated from the irrelevant

items, which results in more potential planning errors.

Decomposing the long-term goal also contributes to a
significant reduction of the planning time and the number of
expanded nodes by four orders of magnitudes, thus enabling
a vast enhancement of planning efficiency. As shown in
the lower part of Table the planning time is over 3,000
times faster in PC and Dining domains, and almost 2,000
time faster in Cleaning and Office domains on average. The
number of expanded nodes is also reduced by, on average,
circa 2,000 times in all the experiments.

Ablation: Besides GPT-40, we further evaluate DELTA
with GPT-4-turbo and Llama-3.1-70B. The corresponding
success rates are listed in the lower part of Table [lI] Switching
to GPT-4-turbo results in a notable performance drop, espe-
cially in the Office domain, where the success rate decreased
significantly from 74.67% to 9.66%. The results in PC and
Dining domains, i.e., domains with independent sub-tasks, are
less affected. Nonetheless, the numbers from Llama-3.1-70B
are even considerably lower than those from GPT-4-turbo,
implying an enormous performance gap. This is possibly
caused by the reducing parameter count of Llama-3.1-70B
compared to GPT-4-turbo and GPT-4o.

VI. CONCLUSION

Despite their training on vast amount of data, LLMs can
generate infeasible plans due to hallucinations or missing
information. Moreover, classical planning techniques often re-
quire extensive annotation or domain-specific heuristics to in-
corporate context and semantics. To address these challenges
and improve plan feasibility and efficiency, we introduced
DELTA, a novel LLM-informed task planning approach.
DELTA’s integration of scene graphs and LL.Ms facilitates the
rapid generation of precise planning problem descriptions.
To enhance planning performance, DELTA decomposes long-
term task goals with LLMs into a sequence of sub-goals,
enabling automated task planners to efficiently solve complex
problems. In our evaluation, we show how DELTA enables
a significant enhancement of efficiency in automated task
planning in terms of a considerably faster planning time
and higher success rates compared to various baselines. For
future work, we plan to implement repairing mechanisms for
handling uncertainties in dynamic environments, and validate
our approach on real-world robot operations.
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